g1 SAT9 INTRO 1

July 22, 2021 at 04:22

1. Intro. This program is part of a series of “SAT-solvers” that I'm putting together for my own
education as I prepare to write Section 7.2.2.2 of The Art of Computer Programming. My intent is to
have a variety of compatible programs on which I can run experiments to learn how different approaches
work in practice.

This time I'm implementing the algorithm that physicists have christened “Survey Propagation.” It’s
a development of a message-passing idea called “Belief Propagation,” which in turn extends “Warning
Propagation.” [See Braunstein, Mézard, and Zecchina, Random Structures &Algorithms 27 (2005), 201—
226.] And I'm also implementing an extended, improved algorithm that incorporates “reinforcement” [see
Chavas, Furtlehner, Mézard, and Zecchina, Journal of Statistical Mechanics (November 2005), P11016,
25 pages|. While writing this code I was greatly helped by studying an implementation prepared by Carlo
Baldassi in March 2012.

2. If you have already read SATS, or any other program of this series, you might as well skip now past the
rest of this introduction, and past the code for the “I/O wrapper” that is presented in the next dozen or so
sections, because you've seen it before. (Except that there are several new command-line options, and the
output is a reduced set of clauses rather than a solution.)

The input appears on stdin as a series of lines, with one clause per line. Each clause is a sequence of
literals separated by spaces. Each literal is a sequence of one to eight ASCII characters between ! and },
inclusive, not beginning with ~, optionally preceded by ~ (which makes the literal “negative”). For example,
Rivest’s famous clauses on four variables, found in 6.5-(13) and 7.1.1-(32) of TAOCP, can be represented

by the following eight lines of input:
x2 x3 x4

x1 x3 x4

“x1 x2 x4

“x1 "x2 x3

“x2 "x3 x4

“x1 "x3 "x4

x1 "x2 “x4

x1 x2 "x3
Input lines that begin with ~, are ignored (treated as comments). The output will be ‘~~?” if the algorithm
could not find a way to satisfy the input clauses. Otherwise it will be a partial solution: a list of noncontra-
dictory literals that cover some but maybe not all of the clauses, separated by spaces. (“Noncontradictory”
means that we don’t have both a literal and its negation.) The residual problem, which must be satisfied if
the partial assignment turns out to be valid, is written to an auxiliary file. (The partial assignment might
be faulty; the algorithm has pretty good heuristics, but there are no guarantees.)

The input above would, for example, probably yield ‘~~?’. But if the final clause were omitted, the output
might be ‘"x1 “x2’, leaving a residual problem with the two clauses ‘x3 "x4’ and ‘x3 x4’. Or it might be
‘~x3’, leaving the (unsatisfiable) residual problem ‘x2 ~“x4’, ‘x1 x4’, ‘“"x1 x2, x4’, “"x1 “x2’, ‘x1 “x2 “x4’.

The running time in “mems” is also reported, together with the approximate number of bytes needed for
data storage. One “mem” essentially means a memory access to a 64-bit word. (These totals don’t include
the time or space needed to parse the input or to format the output.)



2 INTRO SAT9 83

3. So here’s the structure of the program. (Skip ahead if you are impatient to see the interesting stuff.)

#define o mems++ /* count one mem */
F#define oo mems +=2 /* count two mems */
#define ooo mems +=3 /* count three mems */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "gb_f1ip.h"
typedef unsigned int uint; /* a convenient abbreviation */
typedef unsigned long long ullng; /x ditto */

('Type definitions 6 );
( Global variables 4);
(Subroutines 26 );

main (int argc, char xargv|])
{
register uint ¢, g, h, ¢, j, k, I, p, q, v, i, kk, ll, fecount;
(Process the command line 5);
(Initialize everything 9);
(Input the clauses 10);
if (verbose & show_basics) (Report the successful completion of the input phase 22 );
(Set up the main data structures 28 );
imems = mems, mems = 0;
(Solve the problem 35);
if (verbose & show_basics)
forintf (stderr, "Altogether%11lu+)11lu mems, %llu bytes.\n", imems, mems, bytes);

4. H#define show_basics 1 /* werbose code for basic stats */

#define show_choices 2 /x wverbose code for backtrack logging */

F#define show_details 4 /% werbose code for further commentary x/
#define show_gory-details 8 /* werbose code turned on when debugging */
F#define show_histogram 16 /* werbose code to make a m x 7 histogram */

#define show_pis 32 /* wverbose code to print out all the m’s x/
( Global variables 4) =
int random_seed = 0; /* seed for the random words of gb_rand =/
int verbose = show_basics; /x level of verbosity */
int hbits = §; /* logarithm of the number of the hash lists */
int buf size = 1024; /+ must exceed the length of the longest input line x/

int maz_iter = 1000; /* maximum iterations */

int min_iter = 5; /* minimum iterations before reinforcement kicks in */
int confidence = 50; /* lower limit for confidence of setting a variable x*/
double damper = 0.99; /* the damping factor for reinforcement */
double threshold = 0.01; /* upper limit for convergence check */

ullng imems, mems; /* mem counts x/

ullng thresh = 0; /* report when mems exceeds this, if delta # 0 */
ullng delta = 0; /* report every delta or so mems */

ullng bytes; /* memory used by main data structures */

See also sections 8, 25, 36, and 54.

This code is used in section 3.



§5  SAT9 INTRO 3

“

On the command line one can specify any or all of the following options:

<

integer )’ to enable various levels of verbose output on stderr.
positive integer )’ to adjust the hash table size.
positive integer )’ to adjust the size of the input buffer.

{
h(
{
(integer )’ to define the seed for any random numbers that are used.
{
(
1

v
h
‘b
‘s
d
t

<

integer )’ to set delta for periodic state reports.

integer )’ to define the maximum number of iterations.

integer )’ to define the minimum number of iterations before reinforcement begins.

‘c(integer)’ to define the confidence percentage, above which we decide that a variable is sufficiently
biased to be assigned a value.

e ‘p(float)’ to define the damping factor damper for reinforcement.

e ‘e(float)’ to define the threshold by which we decide that the messages have converged.

The defaults are listed with ‘Global variables’ above.

(Process the command line 5) =
for (j = arge — 1,k =0; j7; j—)
switch (argv[j][0]) {
case ’v’: k |= (sscanf (argv[j] + 1,"%d", &verbose) — 1); break;
case ’h’: k |= (sscanf (argv[j] + 1,"%d", &hbits) — 1); break;
case ’b’: k |= (sscanf (argv[j] + 1, "%d", &buf_size) — 1); break;
case ’s’: k |= (sscanf (argu[j] + 1, "%d", &random_seed) — 1); break;
case ’d’: k |= (sscanf (argu[j] + 1, "%11d", &delta) — 1); thresh = delta; break;
case 't’: k |= (sscanf (argv[j] + 1, "%d", &maz_iter) — 1); break;
( (argvj]
( ( ]
( ( |+
(

<

case ’1’: k |= (sscanf (argv[j] + 1, "%d", &min_iter) — 1); break;
case ’c’: k |= (sscanf (argu[j] + 1, "%d", &confidence) — 1); break,
case ’p’: k |= (sscanf (argu[j] + 1,"%1f", &damper) — 1); break;
case ’e’: k |= (sscanf (argv[j] + 1, "%1E", &threshold) — 1); break;
default: k£ =1; /* unrecognized command-line option */

if (kV hbits < 0V hbits > 30V buf_size <0) {
forintf (stderr,
"Usage: hsy [v<n>] | [h<n>] | [b<n>] | [s<n>] [d<n>] | [t<n>] | [1<n>] | [e<n>] | [p<E>]  [e<E>]\n",
argu [0]);
exit(—1);
¥
if (damper < 0.0V damper > 1.0) {
forintf (stderr, "Parameter, p_should, be between ,0.0,and; 1.0'\n");
exit (—666);
}

if (confidence < 0V confidence > 100) {
forintf (stderr, "Parameter c_should, be between 0,and ;100! \n");

exit (—667);

This code is used in section 3.



4  THE I/O WRAPPER SAT9  §6

6. The I/O wrapper. The following routines read the input and absorb it into temporary data areas
from which all of the “real” data structures can readily be initialized. My intent is to incorporate these
routines in all of the SAT-solvers in this series. Therefore I've tried to make the code short and simple,
yet versatile enough so that almost no restrictions are placed on the sizes of problems that can be handled.
These routines are supposed to work properly unless there are more than 232 —1 = 4,294,967,295 occurrences
of literals in clauses, or more than 23! — 1 = 2,147,483,647 variables or clauses.

In these temporary tables, each variable is represented by four things: its unique name; its serial number;
the clause number (if any) in which it has most recently appeared; and a pointer to the previous variable (if
any) with the same hash address. Several variables at a time are represented sequentially in small chunks of
memory called “vchunks,” which are allocated as needed (and freed later).

#define wvars_per_vchunk 341 /* preferably (2% —1)/3 for some k */
(Type definitions 6) =
typedef union {

char ch8[8];
uint u2[2];
long long Ing;
} octa;
typedef struct tmp_var_struct {
octa name; /* the name (one to seven ASCII characters) x*/
uint serial; /* 0 for the first variable, 1 for the second, etc. */
int stamp; /* m if positively in clause m; —m if negatively there */
struct tmp_var_struct xnext; /x pointer for hash list */

} tmp_var;
typedef struct vchunk_struct {
struct vchunk_struct *prev; /* previous chunk allocated (if any) */
tmp_var var[vars_per_vchunk];
} vchunk;
See also sections 7 and 24.

This code is used in section 3.

7. Each clause in the temporary tables is represented by a sequence of one or more pointers to the tmp_var
nodes of the literals involved. A negated literal is indicated by adding 1 to such a pointer. The first literal of
a clause is indicated by adding 2. Several of these pointers are represented sequentially in chunks of memory,
which are allocated as needed and freed later.

F#define cells_per_chunk 511 /% preferably 2% — 1 for some k */
{ Type definitions 6) +=
typedef struct chunk_struct {
struct chunk_struct *prev; /* previous chunk allocated (if any) */

tmp_var xcell[cells_per_chunk];
} chunk;



88  SAT9 THE I/O WRAPPER

8. (Global variables 4) +=
char xbuf; /x buffer for reading the lines (clauses) of stdin */
tmp_var sxhash; /* heads of the hash lists */
uint hash_bits[93][8]; /* random bits for universal hash function =/
vchunk *cur_vchunk; /* the vchunk currently being filled */
tmp_var xcur_tmp_var; /* current place to create new tmp_var entries */
tmp._var xbad_tmp_var; /* the cur_tmp_var when we need a new vchunk x/
chunk xcur_chunk; /* the chunk currently being filled */
tmp_var sxcur_cell; /* current place to create new elements of a clause */
tmp_var xxbad_cell; /* the cur_cell when we need a new chunk x/
ullng vars; /* how many distinct variables have we seen? x/
ullng clauses; /+ how many clauses have we seen? x*/
ullng nuliclauses; /* how many of them were null? x/
ullng cells; /* how many occurrences of literals in clauses? x*/

9. (Initialize everything 9) =
gb_init_rand (random_seed);
buf = (char *) malloc(buf-size * sizeof (char));
if (buf) {
forintf (stderr, "Couldn’t allocate the input buffer (buf_size=%d) !\n", buf size);
exit(—2);
}
hash = (tmp_var xx) malloc(sizeof (tmp_var) < hbits);
if (—hash) {
forintf (stderr, "Couldn’t allocate, %d hash list heads, (hbits=%d) !'\n", 1 < hbits, hbits);
exit(—3);
}
for (h=0; h <1< hbits; h++) hash[h] = A;
See also section 15.

This code is used in section 3.



6  THE I/O WRAPPER SAT9  §10

10. The hash address of each variable name has h bits, where h is the value of the adjustable parameter
hbits. Thus the average number of variables per hash list is n/2" when there are n different variables. A
warning is printed if this average number exceeds 10. (For example, if h has its default value, 8, the program
will suggest that you might want to increase h if your input has 2560 different variables or more.)

All the hashing takes place at the very beginning, and the hash tables are actually recycled before any
SAT-solving takes place; therefore the setting of this parameter is by no means crucial. But I didn’t want
to bother with fancy coding that would determine h automatically.

(Input the clauses 10) =
while (1) {

if (—fgets(buf, buf-size, stdin)) break;

clauses ++;

if (buf [strien(buf) — 1] # *\n’) {
forintf (stderr, "The_clauseon line %d,,(%.20s...) is too long for me;\n", clauses, buf);
forintf (stderr, " my_buf _size is only %d!\n", buf_size);
forintf (stderr, "Please use the command-line joption b<newsize>.\n");
exit (—4);

(Input the clause in buf 11);
}
if ((vars > hbits) > 10) {
forintf (stderr, "There are %d variables but only, %d hash tables;\n", vars,1 < hbits);
while ((vars > hbits) > 10) hbits++;
forintf (stderr, " _maybe_you_should use command-line option h%d?\n", hbits);

clauses —= nullclauses;

if (clauses =0) {
forintf (stderr, "No,clauses were input!\n");
exit (—77);

if (vars > #80000000) {
forintf (stderr, "Whoa, the input had %1lu variables!\n", vars);
exit (—664);

if (clauses > #80000000) {
forintf (stderr, "Whoa, the input had, %1lu clauses!\n", clauses);
exit (—665);
}
if (cells > #100000000) {
forintf (stderr, "Whoa, the_ input, had %1llu occurrences of literals!\n", cells);
exit (—666);
}

This code is used in section 3.



§11 SAT9 THE I/O WRAPPER 7

11. (Input the clause in buf 11) =
for (j=k=0;; ) {
while (buf[j] =u) j++; /* scan to nonblank x/
if (buf[j] =’\n’) break;
if (buf[j] <’w’ Vbuf[j] > ") {
forintf (stderr, "I1legal character (code_ #%x) in the clause on line %d'\n", buf[j], clauses);
exit (—5);

if (buf[j] ="77) i=1,j++;
else i =0;
(Scan and record a variable; negate it if i =1 12);

¥

if (k=0) {
forintf (stderr, " (Empty_line %d is being ignored)\n", clauses);
nullclauses ++; /* strictly speaking it would be unsatisfiable x/

}

goto clause_done;
empty_clause: (Remove all variables of the current clause 19);
clause_done: cells +=k;

This code is used in section 10.

12. We need a hack to insert the bit codes 1 and/or 2 into a pointer value.
#define hack_in(q,t) (tmp_var *)(¢ | (ullng) q)

(Scan and record a variable; negate it if i =1 12) =

{

register tmp_var xp;

if (cur_tmp_var = bad_tmp_var) (Install a new vchunk 13);
(Put the variable name beginning at buf[j] in cur_tmp_var-name and compute its hash code h 16);
(Find cur_tmp_var-name in the hash table at p 17);
if (pstamp = clauses V p~stamp = —clauses) (Handle a duplicate literal 18)
else {
pstamp = (i 7 —clauses : clauses);
if (cur_cell = bad_cell) (Install a new chunk 14);
xcur_cell = p;
if (i=1) xcur_cell = hack_in(xcur_cell, 1);
if (k=0) xcur_cell = hack_in (xcur_cell, 2);
cur_cell ++, k++;
}
}

This code is used in section 11.



8  THE I/O WRAPPER SAT9  §13

13. (Install a new vchunk 13) =

register vchunk sxnew_vchunk;

new_vchunk = (vchunk *) malloc(sizeof (vchunk));

if (—new_vchunk) {
forintf (stderr,"Can’t,allocate a new vchunk!\n");
exit (—6);

}

new_vchunk-prev = cur_vchunk, cur_vchunk = new_vchunk;

cur_tmp_var = &new_vchunk-var|0];

bad_tmp_var = &new_vchunk-var[vars_per_vchunk];

}

This code is used in section 12.

14. (Install a new chunk 14) =

{

register chunk xnew_chunk;

new_chunk = (chunk x) malloc (sizeof (chunk));

if (—new-chunk) {
forintf (stderr,"Can’t allocate a new chunk!\n");
exit (—7);

}

new_chunk-prev = cur_chunk, cur_chunk = new_chunk;

cur_cell = &new_chunk-cell[0];

bad_cell = &new_chunk-cell[cells_per_chunk];

}

This code is used in section 12.

15. The hash code is computed via “universal hashing,” using the following precomputed tables of random
bits.

(Initialize everything 9) +=
for (j =92 j; j—)
for (k=0; k < 8; k++) hash_bits[j]|[k] = gb_next_rand();

16. (Put the variable name beginning at buf[j] in cur_tmp_var-name and compute its hash code h 16) =
cur_tmp_var-name.lng = 0;

for (h=1=0; buf[j+{ >’ Abuf[j+1] <7 1++) {
if (I1>7){
forintf (stderr, "Variable name_%.9s.. . in the clause_ on line %d is_too long!'\n", buf + j,
clauses);
exit (—8);

}
h ®&= hash_bits[buf[j +1] — 1’ ][I];
cur_tmp_var-name.ch8[l] = buf [j +1];
}
if (I1=0) goto empty_clause; /* ‘77 by itself is like ‘true’ x/
J+=1
h &= (1 < hbits) — 1;

This code is used in section 12.



817  SAT9 THE I/O WRAPPER 9

17. (Find cur_tmp_var-name in the hash table at p 17) =
for (p = hash[h]; p; p = p~next)
if (p~name.lng = cur_tmp_var-name.lng) break;
if (-p) { /* new variable found =/
p = cur_-tmp-var ++;
pnext = hash|h], hash|h] = p;
pserial = vars ++;
pestamp = 0;

}

This code is used in section 12.

18. The most interesting aspect of the input phase is probably the “unwinding” that we might need to do
when encountering a literal more than once in the same clause.

(Handle a duplicate literal 18) =

{

if ((p~stamp > 0) = (i > 0)) goto empty_clause;

}

This code is used in section 12.

19. An input line that begins with ‘~ )’ is silently treated as a comment. Otherwise redundant clauses are
logged, in case they were unintentional. (One can, however, intentionally use redundant clauses to force the
order of the variables.)

(Remove all variables of the current clause 19) =

while (k) {
(Move cur-cell backward to the previous cell 20);
k=

}
if ((buf[0] #°77) v (buf[1] # °0))

forintf (stderr, " (The clause_on line %d is always_ satisfied)\n", clauses);
nullclauses ++;

This code is used in section 11.

20. (Move cur_cell backward to the previous cell 20) =
if (cur_cell > &cur_chunk-cell[0]) cur_cell —;
else {
register chunk xold_chunk = cur_chunk;

cur_chunk = old_chunk-prev; free(old_chunk);
bad_cell = &cur_chunk-cell|cells_per_chunk];
cur_cell = bad_cell — 1;

}

This code is used in sections 19 and 32.

21. (Move cur_tmp_var backward to the previous temporary variable 21) =
if (cur_tmp_var > &cur_vchunk-var[0]) cur_tmp_var —;
else {
register vchunk xold_vchunk = cur_vchunk;

cur_vchunk = old_vchunk-prev; free(old_vchunk);

bad_tmp_var = & cur_vchunk-var [vars_per_vchunk];
cur_tmp_var = bad_tmp_var — 1;

}

This code is used in section 33.



10 THE I/O WRAPPER SAT9 §22

22. (Report the successful completion of the input phase 22) =
forintf (stderr, " (%duvariables, j%d clauses, %llu literals successfully read)\n", vars, clauses,

cells);

This code is used in section 3.



§23 SAT9 SAT SOLVING, VERSION 9 11

23. SAT solving, version 9. Survey Propagation is slightly similar to WalkSAT, but it’s really a new
kettle of fish. Clauses pass messages to each of their literals, representing locally known information about
the other literals in the clause. Literals pass messages to each of the clauses that they or their complement
are in, representing locally known information about the other clauses to which they belong. When we find
a variable with a strong tendency to be true or false, we fix its value and reduce to a smaller system. Local
information continues to propagate until we get some sort of convergence.

The clause-to-literal messages are called n’s. If ¢ is a clause and [ is a literal, n._,; is a fraction between 0
and 1 that is large if ¢ urgently needs [ to be true, otherwise it’s small.

The literal-to-clause messages are called n’s. They too are fractions between 0 and 1, but they’re sort of
dual because they represent flexibility: The value of m;_,. is small when clauses other than ¢ badly want [
to be true.

An “external force field” that gently nudges literal [ towards a particular value, with urgency n;, is also
present. This force-of-reinforcement tends to improve decision-making, because it encourages the algorithm
to decide between competing tendencies.

Internally we maintain a single value 7; for each literal, namely 1 — n; times the product of 1 — 7._,; over
all clauses ¢ that contain I. The message m;—. is then simply m; when [ ¢ ¢; and it’s /(1 — 1.—;) when
I € ¢. We use a special data structure to count the factors of this product that happen to be zero (within
floating-point precision), so that division by zero isn’t a problem.

24. The data structures are analogous to those of previous programs in this series. There are three main
arrays, cmem, Imem, and mem. Structured clause nodes appear in ¢cmem, and structured literal nodes
appear in Imem. Each clause points to a sequential list of literals and 7’s in mem; each literal points to
a linked list of clause slots in mem, showing where that literal occurs in the problem. The literal nodes in
Imem also hold 7; and ;.

As in most previous programs of this series, the literals  and Z are represented internally by 2k and 2k +1
when z is variable number k.

The symbolic names of variables are kept separately in an array called nmem.
(Type definitions 6) +=

typedef struct {

double eta; /* the external force on this literal */

double pi; /* this literal’s current 7 value x/

uint zf; /* the number of suppressed zero factors in pi */
uint link; /* first occurrence of the literal in mem, plus 1 */

int rating; /* +1 positive, —1 negative, 0 wishy-washy or wild */
} literal; /+ would it go faster if I added four more bytes of padding? x*/
typedef struct {

uint start; /* where the literal list starts in mem */
uint size; /* number of remaining literals in clause postprocessing phase */
} clause;

typedef struct {
union { double d;

ullng w;
} eta; /* n message for a literal */
uint lit; /* number of that literal */
uint next; /+ where that literal next appears in mem, plus 1 */

} mem_item;



12 SAT SOLVING, VERSION 9 SAT9 825

25. (Global variables 4) +=

clause xcmem; /* the master array of clauses x/

literal *lmem; /* the master array of literals */

mem_item xmem; /* the master array of literals in clauses */
mem_item xcur_mcell; /* the current cell of interest in mem =/
octa xnmem; /+ the master array of symbolic variable names */
double xgam; /* temporary array to hold gamma ratios */

26. Here is a subroutine that prints a clause symbolically. It illustrates some of the conventions of the
data structures that have been explained above. I use it only for debugging.
(Subroutines 26) =
void print_clause (uint c)
{ /* the first clause is called clause 1, not 0 %/
register uint [, II;
forintf (stderr,"%d:\n", ¢); /* show the clause number x/
for (I = cmem[c — 1].start; | < ecmem|c].start; 1++) {
1l = meml|l].lit;
forintf (stderr, " %s%.8s(%d) ,ueta=%.15g\n", &1 2 "~" : " nmem[ll > 1].ch8,1l > 1,
mem|l].eta.d);
}

}

See also sections 27 and 47.

This code is used in section 3.

27. Another simple subroutine shows the two 7 and 7 values for a given variable.

{ Subroutines 26) +=
void print_var (uint k)
{
register uint [ =k < 1;
forintf (stderr, "pi (%.8s)=Y%.15g(%d) ,.eta(%.8s)=%.15g,.", nmem[k].ch8, Imem][l].pi, Imem]l].2f,
nmem/[k].ch8 , lmem|l].eta);
forintf (stderr, "pi("%.8s)=%.15g(%d),Leta("%.8s)=%.15g\n", nmem|[k].ch8, Imem|[l + 1].ps,
Imem[l 4 1].2f , nmem[k].ch8, Imem[l 4 1].eta);



§28 SAT9 INITIALIZING THE REAL DATA STRUCTURES 13

28. Initializing the real data structures. We’re ready now to convert the temporary chunks of data
into the form we want, and to recycle those chunks.

(Set up the main data structures 28) =
(Allocate the main arrays 29 );
(Zero the links 30);
(Copy all the temporary cells to the mem and c¢mem arrays in proper format 31);
(Copy all the temporary variable nodes to the nmem array in proper format 33 );
(Check consistency 34 );

This code is used in section 3.

29. (Allocate the main arrays 29) =
free(buf); free(hash); /* a tiny gesture to make a little room */
Imem = (literal %) malloc((vars + vars + 1)  sizeof (literal ));
if (—lmem) {
forintf (stderr, "0ops, I, can’t allocate the lmem array!\n");
exit (—12);

bytes = (vars + vars + 1) * sizeof (literal );

nmem = (octa *) malloc(vars  sizeof (octa));

if (—-nmem) {
forintf (stderr, "Oops, I, can’t allocate the nmem array!\n");
exit (—13);

}

bytes += vars * sizeof (octa);

mem = (mem_item x) malloc(cells x sizeof (mem_item));

if (—-mem) {
forintf (stderr, "Oops, I can’t allocate the big mem array!\n");
exit (—10);

}

bytes += cells * sizeof (mem_item);

cmem = (clause *) malloc((clauses + 1) * sizeof (clause));

if (memem) {
forintf (stderr, "Oops, I can’t allocate the cmem array!\n");
exit(—11);

}

bytes += (clauses + 1) x sizeof (clause);

This code is used in section 28.

30. (Zero the links 30) =
for (I =vars + vars; l; 1-——) o,lmem][l — 1].link = 0;

This code is used in section 28.



14 INITIALIZING THE REAL DATA STRUCTURES SAT9

31. (Copy all the temporary cells to the mem and e¢mem arrays in proper format 31) =
for (¢ = clauses, cur-mcell = mem + cells, kk = 0; ¢; ¢c—) {
o, cmem/|c].start = cur-mcell — mem;

k= 0;
(Insert the cells for the literals of clause ¢ 32);
if (k> kk) kk =k; /* maximum clause size seen so far */

if (curomeell # mem) {
forintf (stderr, "Confusion about the number of cells!\n");
exit (—99);

o0, cmem|[0].start = 0;

gam = (double ) malloc (kk * sizeof (double));

if (gam) {
forintf (stderr, "0ops, I can’t allocate the gamma array!\n");
exit (—16);

}

bytes += kk * sizeof (double);

This code is used in section 28.

32. The basic idea is to “unwind” the steps that we went through while building up the chunks.

#define hack-out(q) (((ullng) q) & #3)
#define hack_clean(q) ((tmp_var x)((ullng) g & —4))

(Insert the cells for the literals of clause ¢ 32) =

for (1 =0; i <2; k++) {
(Move cur-cell backward to the previous cell 20);
1 = hack_out (xcur_cell);
p = hack_clean (xcur_cell )~serial;
cur_mecell —;
o, cur-meell=lit =l =p+p+ (i & 1);
00, cur-mcell-next = Ilmem(l].link;
o, Imem[l].link = cur_mcell — mem + 1;

}

This code is used in section 31.

33. (Copy all the temporary variable nodes to the nmem array in proper format 33) =
for (¢ =wars; ¢; c—) {
(Move cur-tmp_var backward to the previous temporary variable 21);
o,nmem[c — 1].lng = cur_tmp_var-name.lng;

}

This code is used in section 28.

34. We should now have unwound all the temporary data chunks back to their beginnings.

( Check consistency 34) =
if (cur_cell # &cur_chunk-cell|0] V cur_chunk-prev # AV cur-tmp_var #
& cur_vchunk-var[0] V cur_vchunk-prev # A) {
forintf (stderr, "This can’t happen (consistency check failure) !\n");
exit (—14);

free(cur_chunk); free(cur_vchunk);

This code is used in section 28.

§31



835  SAT9 DOING IT 15

35. Doing it. So we take surveys.

(Solve the problem 35) =
factor = 1.0;
(Initialize all 7’s to random fractions 37);
for (iter = 0; iter < maz_iter; iter++) {
if ((iter & 1) A dter > min_iter) {
( Adjust the reinforcement fields 39 );
(Exit if the clauses are pseudo-satisfied 40);

if (verbose & show_choices) fprintf (stderr,"beginning iteration,%d\n", iter + 1);
(Compute the 7’s 38);
(Update the n’s 41);
if (verbose & show_details) fprintf (stderr, " (max,diff %.15g,.%11d mems)\n", maz_diff , mems);
if (delta A (mems > thresh)) {
thresh += delta;
forintf (stderr, " after %11d mems, iteration, %d had max diff kg\n", mems, iter +1, maz_diff );

}

if (max_diff < threshold A iter > min_iter) break;
}
(Output a reduced problem 42 );

This code is used in section 3.

36. (Global variables 4) +=

int dter; /* number of the current iteration */

double acc, etabar, pi0, pil, old_eta, new_eta, new_gam, factor, rein, diff;
/* intermediate registers for floating-point calculations */

double max_diff ; /* biggest change from old_eta to new_eta */

double factor; /* damper® if we've reinforced ¢ times x/

int azf; /+ number of zero factors suppressed from acc */

int max_iter;

37. The macro gb_next-rand( ) delivers a 31-bit random integer, and my convention is to charge four mems
whenever it is called.

The initial values of 1._,; are random, but the initial values of the external fields 7; are zero.

After this point the computation becomes deterministic.

(Initialize all 7’s to random fractions 37) =
for (k=0; k < cells; k++) mems += 5, mem|k].eta.d = ((double)(gb_next_rand()))/2147483647.0;
for (k=0; k < wvars + vars; k +=2) ooo, lmem[k].eta = 0.0, Imem[k + 1].eta = 0.0;

This code is used in section 35.

38. (Compute the 7’s 38) =
for (I1=0; Il <wars + vars; I++) {

if (o, lmem][l].eta = 1.0) acc = 1.0, azf = 1;

else acc = 1.0 — Imeml|l].eta, azf = 0;

for (j = lmem][l].link; j; 7 = mem[j — 1].next) {
o, etabar = 1.0 — mem|[j — 1].eta.d;
if (etabar = 0.0) azf ++;
else acc *= etabar;

}

00, Imem|[l].zf = azf,lmem|l].pi = acc;

}

This code is used in section 35.



16  DOING IT SAT9 839

39. Either 7, or 7 is zero; the other is (1 — factor) times |p — g|, where p and ¢ are the normalized forces
that favor [ and .

In this loop [ = 2k, when we process variable k. The rating field of [ is set to +1, 0, or —1 if we currently
rate the variable’s value as 1, %, or 0.

This rating “field” is based on what the physicists also call a “field,” but in a different context: They
consider that literal [ tends to be (1,0, x) with probabilities that are respectively proportional to (7j(1—m;),
m(1—ng), mjm;). These probabilities can be normalized so that they are (p,q,r) with p+ ¢+ r = 1. The
rating is 0 if and only if » > max{p, ¢}; otherwise it’s +1 when p > ¢, or —1 when p < ¢. The condition
r > max{p, ¢} turns out to be equivalent to saying that m; and 7y are both > 0.5. Later we will use |p — ¢|
to decide the “bias” of a literal.

( Adjust the reinforcement fields 39) =
{
factor x= damper;
rein = 1.0 — factor;
if (verbose & show_details) fprintf (stderr, " (rein=%.15g)\n", rein);
for (I =0; I < wvars +wvars; | +=2) {
if (o, Imeml[l].zf) pi0 = 0.0;
else o, pi0 = Imem|[l].pi;
if (o, imem|[l + 1].2f) pil = 0.0;
else o, pil = Imem|[l + 1].pi;
if (pi0 + pil =0.0) {
if (verbose & show_basics)
forintf (stderr, "Sorry, a contradiction was found after iteration,%d!\n", iter);
goto contradiction;

if (pil > pi0) {
o, lImem/[l].rating = (pi0 > 0.570: 1);
if ((verbose & show_gory_details) A lmem|[l + 1].eta)
forintf (stderr, " eta("%.8s) reset\n", nmem|[l > 1].ch8);
00, Imem[l].eta = rein * (pil — pi0)/(pi0 + pil — pi0 * pil ), Imem|[l + 1].eta = 0.0;
} else {
o, lmem|l].rating = (pil >0.5?70: —1);
if ((verbose & show_gory_details) A lmem[l].eta)
forintf (stderr, " eta(%.8s) ureset\n", nmem[l > 1].ch8);
00, Imem|[l + 1].eta = rein * (pi0 — pil )/ (pi0 + pil — pi0 * pil), Imem|l].eta = 0.0;
}
}
}

This code is used in section 35.



840  SAT9 DOING IT 17
40. A clause is “pseudo-satisfied” if it contains a variable whose current value is rated *, or if it is satisfied
in the normal way. With luck, we get to a pseudo-satisfied state before maz_diff gets small. (This seems
to be a transient phenomenon in many examples: If we wait for maz_diff to get small, the 7’s might all be
approaching 1 and very few variables would become fixed.)

(Exit if the clauses are pseudo-satisfied 40) =
for (k=c=0; ¢ < clauses; c++) {
for (0; k < cmem[c+ 1].start; k++) {
00,1 = mem/[k].lit,p = Imem[l & —2].rating;
if (p=0) goto ok;
if (((int) p<0)=(I&1)) goto ok;
}

goto not_ok; /* clause not pseudo-satisfied */
ok: k = cmem][c+ 1].start;
continue;

if (verbose & show_details)

forintf (stderr, "Clauses_pseudo-satisfied on,iteration, }d\n",iter + 1);
break; /* yes, we made it through all of them =/
not_ok:

This code is used in section 35.



18  DOING IT SAT9 §41

41. If the clauseis l; V- - -V, we compute ratios 7y, ..., 7 representing the perceived difficulty of making
l; true; then n; is the product vy ... vi—17i41 - - - Vk-
(Update the n’s 41) =
maz_diff = 0.0;
for (k=c=0; ¢ < clauses; c++) {
acc = 1.0, azf = 0;
for (0,5 =0; k < cmem|[c+ 1].start; j++,k++) {
0,1l = memlk].lit;
if (o, Imem|[l ® 1].2f) pi0 = 0.0;
else o, pi0 = lmem|[l ® 1].pi;
o, old_eta = mem/[k].eta.d;
if (old_eta =1.0) {
if (o, Imeml[l].zf > 1) pil = 0.0;
else o, pil = lmem[l].pi;
} else if (o,lmem]l].2f) pil = 0.0;
else o, pil = Imem][l].pi/(1.0 — old_eta);
pil = pil x (1.0 — pi0);
if (pi1 =0.0) azf ++,0, gam[j] = 0.0;
else {
new_gam = pil /(pil + pi0);
0, gam[j] = new_gam;
acc *= new_gam;
}
}
for (i=y7; i; i—) {
if (0, gam[j —1i] =0.0) {
if (azf > 1) new_eta = 0.0;
else new_eta = acc;
} else if (azf) new_eta = 0.0;
else new_eta = acc/gam[j — il;
o, diff = new_eta — memlk — i].eta.d;
if (diff >0) {
if (diff > max_diff ) max_diff = diff;
} else if (—diff > max_diff ) maz_diff = —diff;
o, mem[k — i].eta.d = new_eta;
}
}

This code is used in section 35.



842  SAT9 THE AFTERMATH 19

42. The aftermath. When convergence or pseudo-satisfiability is achieved, we want to use the values
of m to decide which variables should probably become 0 or 1. For example, if 7; is small but 77 is large,
literal [ should be true.

(Output a reduced problem 42) =
if (iter = maz_iter) {
if (verbose & show_basics) fprintf (stderr,"The_messages didn’t,converge.\n");
goto contradiction;
}
if (verbose & show_pis) (Print all the 7’s 43);
if (verbose & show_histogram) (Print a two-dimension histogram of m, versus 75 44 );
(Decide which variables to fix 45);
(Preprocess the clauses for reduction 46 );
(Reduce the problem 52);
(Output the reduced problem 53 );
goto done;
contradiction: printf ("~~7\n"); done:

This code is used in section 35.

43. Here we show not only 7, and 75 for each variable v, but also the associated “fields” (p, ¢, ) described
above.
(Print all the 7’s 43) =

{

if (iter < max_iter) fprintf (stderr,"converged after %d iterations.\n",iter + 1);
else fprintf (stderr,"no convergence, (diff %g) after %d iterations.\n", maz_diff , max_iter);

fprintf(Stdff?“T, "variable ,uuupi (V)uul_n_ll_ll_luupi ") Luoouoooo L uoouOuL |*\n");
for (k=0; k <wars; k++) {
double den;

forintf (stderr,"%8.8s,%10.7£ (%d)L%10.7£ (4d) ", nmem[k].ch8, Imem[k + k].pi, Imem [k + k].2f
Imem[k + k + 1].pi, Imem[k + k + 1].2f );
pi0 = Imem[k + k].pi;
if (Imem[k + k|.2f) pi0 = 0.0;
pil = lmem[k + k + 1].pi;
if (Imemlk +k +1].2f) pil =0.0;
den = pi0 + pil — pi0 * pil;
forintf (stderr, " uouuhd . 2£ %4 . 2£ %4 . 2E\n", pil * (1 — pi0)/den, pi0 * (1 — pil )/den, pi0 = pil /den);
}
¥

This code is used in section 42.



20

44.

}

THE AFTERMATH SAT9

(Print a two-dimension histogram of m, versus 7; 44) =

uint hist[10][10];
for (j =0; j <10; j++)
for (k=0; k < 10; k++) hist[j][k] = 0;
for (k=0; k <wars; k++) {
i = (int)(10 x Imem [k + k].pi), 7 = (int)(10 * Imem [k + k + 1].pi);
if (Imeml[k +k].2f) i =0;
if (Imem[k+k+1].2f) j=0;
if (i=10) i=9;
if (j =10) j=09;
hist[i] [j]++;
}
forintf (stderr, "Histogram of the pi’s, after ld,iterations:\n",iter + 1);
for (j =10; j; j—) {
for (i =0; i < 10; i++) fprintf (stderr, "%h7d", hist[i][j — 1]);
forintf (stderr,"\n");

}

This code is used in section 42.

§44



845  SAT9 THE AFTERMATH 21

45. The difference b = 100 |p — ¢| in the field of variable v represents v’s percentage bias towards a non-x
value. All variables for which b is greater than or equal to the confidence parameter are placed into bucket b.
Then we go through buckets 100, 99, etc., fixing those variables. We also make a “unit” bucket for literals
that appear in unit clauses after reduction.

Links within the bucket lists are odd numbers, terminated by 2; they appear in the rating fields of Imem|[1],
Imem 3], etc.

It’s probably unwise for the user to make confidence < 50, because the pseudo-satisfiability test rates a
variable of field (.5,0,.5) as a ‘+’. But we haven’t ruled that out; after all, this program is just experimental,
and it’s sometimes interesting to explore the consequences of unwise decisions. Therefore we recompute the
rating fields in Imem|[0], Imem[2], etc., so that they merely reflect the sign of p — q.

{ Decide which variables to fix 45) =
for (k = confidence; k < 100; k++) o, bucket[k] = 2;
unit = 2;
for (I =0; I < wvars + vars; | +=2) {
if (o, Imem][l].zf) pi0 = 0.0;
else o, pi0 = lmem|[l].pi;
if (o,Imem[l 4+ 1].2f) pil = 0.0;
else o, pil = Imem|[l + 1].pi;
if (pi0 + pi1 =0.0) {
if (verbose & show_basics) fprintf (stderr,"Sorry, a contradiction was, found!\n");
goto contradiction;

acc = (pil — pi0)/(pi0 + pil — pi0 * pil );
o, Imem/|l].rating = acc > 07?7 +1:acc <07 —1:0;
if (acc < 0) acc = —acc;
j = (int)(100.0 * acc);
if (j > confidence) {
oo, Imem[l + 1].rating = bucket[j];
o0, bucket[j] =1 + 1;
fizcount ++;
}
}

if (verbose & show_basics)
forintf (stderr, " (fixing %d variables after %d iterations, e=%g) \n", fircount, iter +1, max_diff );

This code is used in section 42.

46. We're done with the eta fields in the clauses of cells. So we replace them now with pointers to the
relevant clause numbers.

At this point we also take note of unit clauses that might be present in the input, just in case the user
didn’t reduce them away before presenting the problem.

#define cl(p) mem|p].eta.u /* new use for the eta field */

(Preprocess the clauses for reduction 46) =

for (k=c=0; ¢ < clauses; c++) {
for (; k < cmem[c+ 1].start; k++) o, cl(k) = ¢;
0o, cmem|c].size = k — cmem|c].start;
if (cmem|c].size =1) {

(Enforce the unit literal mem [k — 1].lit 51);

}

}

This code is used in section 42.



22 THE AFTERMATH SAT9

47. Here now is a subroutine that fixes the variables in a given bucket list.

(Subroutines 26) +=
int fizlist (register int k,int b)
{
register int c, j, [, I, p, ¢;
for (; k& 1; o,k = Imem/[k].rating) {
if (o, lmem[k — 1].rating < 0) | = k;
else | =k —1;
printf (" %s%.8s", 1& 1?2 " nmem[l > 1].ch8);
(Mark the clauses that contain [ satisfied 48 );
(Remove [ from all clauses 49);

}

return 1;

}

48. (Mark the clauses that contain [ satisfied 48) =
for (o,p = Imeml[l].link; p; o,p = mem[p — 1].next) {
oo,c=cl(p—1),j = cmem|c].size;
if (j) o, cmem|c].size = 0;

}

This code is used in section 47.

49. Removed literals are flagged by a special code in their nezt field.
#define removed (uint)(—1)

(Remove [ from all clauses 49) =
for (o,p = Imem[l ® 1).link; p; p=1q) {
0,q = mem|[p — 1].next;
oo,c=cl(p—1),j = cmem|c|.size;

if ( =0) continue; /% clause already satisfied */
oo, mem[p — 1].next = removed, cmem|c].size = j — 1;
if (j=2) {

for (o,p = cmem|c].start; o, mem/|p|.next = removed; p++) ;
(Enforce the unit literal mem [p].lit 50);

}
}

This code is used in section 47.

§47



850  SAT9 THE AFTERMATH 23

50. I expect that unit literals will have become sufficiently biased that we’ve already decided to fix them.
But the unit bucket is there just in case we didn’t.

(Enforce the unit literal mem [p].lit 50) =
1l = mem/|p).lit;
if (11&1) {
if (o, Imem/[ll].rating) {
if (o, Imem[ll — 1].rating > 0) goto contra;
} else {
o, Imem[ll — 1].rating = —1;
o, Imem[ll].rating = unit, unit = Il unitcount ++;
}
} else {
if (o, Imem|ll + 1].rating) {
if (o, Imem|ll].rating < 0) {
contra: printf ("\n");
forintf (stderr, "0ops, clause)d is contradicted",c);
if (b>0) fprintf (stderr,",in bucket %d!\n",b);
else fprintf (stderr," while propagating, unit, literals!\n");
return 0;

} else {
o, Imem[ll].rating = +1;
o, Imem[ll + 1].rating = unit, unit = Il + 1, unitcount ++;
}
}

This code is used in section 49.

51. (Enforce the unit literal mem[k — 1].lit 51) =
Il = mem[k — 1].lit;
if (L&) {
if (o, lmem][ll].rating) {
if (o, Imem|ll — 1].rating > 0) goto contra;
} else {
o, Imem[ll — 1].rating = —1;
o, Imem[ll].rating = unit, unit = ll, unitcount ++;
}
} else {
if (o, lmem[ll + 1].rating) {
if (o0, Imem[ll].rating < 0) {
contra: printf ("\n");
forintf (stderr, "Oops, clause  %d is contradicted!\n",¢);
goto contradiction;
¥
} else {
o, Imem[ll].rating = +1;
o, Imem[ll + 1].rating = unit, unit = Il + 1, unitcount ++;
}
}

This code is used in section 46.



24  THE AFTERMATH SAT9  §52

52. (Reduce the problem 52) =
for (k =100; k > confidence; k—)
if (ooo, fixlist(bucket[k], k) = 0) goto contradiction;
while (unit & 1) {
p = unit, unit = 2;
if (oo, fizlist(p,—1) = 0) goto contradiction;

printf ("\n");
if (unitcount A (verbose & show_basics)) fprintf (stderr,
"(unit_propagation fixed %d more variablels)\n", unitcount, unitcount =17 "" : "s");

This code is used in section 42.

53. (Output the reduced problem 53) =
sprintf (name_buf , " /tmp/sat9-%d.dat", random_seed );
out_file = fopen (name_buf,"w");
if (—out_file) {
forintf (stderr, "I can’t open,‘%s’ for writing!\n");
exit (—668);
¥
for (kk =k =p=c=0; ¢ < clauses; c++) {
0,1 = cmem|c].size;
if (i=0) {
0,k = cmem|[c + 1].start;
continue;
}
ptt;
while (i > kk) gam[kk++] = 0;
gam[i — 1] +=1;
for (o; k < cmem[c+ 1].start; k++)
if (o, mem|[k].next # removed) {
I = memlk].lit;
fprintf (out_file, " %s%.85", 1 & 17 """ : "" nmem][l > 1].ch8);

¥
forintf (out_file, "\n");

felose (out_file);
forintf (stderr, "Reduced, problem of jd clauses written on file_ %s\n",p, name_buf);
for (1 =0; i < kk; i++)

if (gaml[i]) fprintf (stderr, ", (%gukhd-clauses)\n", gamli],i + 1);

This code is used in section 42.

54. (Global variables 4) +=
int bucket[101], unit;
int fizcount, unitcount;
char name_buf[32];
FILE xout_file;



855 SAT9

55. Index.

acc: 36, 38, 41, 45.

argc: 3, 5.

argv: 3, 5.

azf: 36, 38, 41.

b:  47.

bad_cell: 8, 12, 14, 20.
bad_tmp_var: 8, 12, 13, 21.
bucket: 45, 52, 54.

buf: 8,9, 10, 11, 16, 19, 29.
buf-size: 4, 5, 9, 10.
bytes: 3, 4, 29, 31.

c: 3, 26, 47.

cell: 7, 14, 20, 34.

cells: 8, 10, 11, 22, 29, 31, 37.
cells_per_chunk: 7, 14, 20.
chunk: 7 8, 14, 20.
chunk_struct: 7.

ch8: 6, 16, 26, 27, 39, 43, 47, 53.

cl: 46, 48, 49.

clause: 24, 25, 29.

clause_done: 11.

clauses: 8, 10, 11, 12, 16, 19, 22, 29, 31, 40,
41, 46, 53.

cmem: 24,25, 26, 29, 31, 40, 41, 46, 48, 49, 53.

confidence: 4, 5, 45, 52.

contra: 50, 51.

contradiction: 39, 42, 45, 51, 52.

cur—cell: 8, 12, 14, 20, 32, 34.

cur—chunk: 8, 14, 20, 34.

cur-mcell: 25, 31, 32.

cur_tmp_var: 8, 12, 13, 16, 17, 21, 33, 34.

cur_vchunk: 8, 13, 21, 34.

d: 24.

damper: 4, 5, 36, 39.

delta: 4, 5, 35.

den: 43.

diff : 36, 41.

done: 42.

empty_clause: 11, 16, 18.
eta: 24, 26, 27, 37, 38, 39, 41, 46.

etabar: 36, 38.

exit: 5,9,10, 11, 13, 14, 16, 29, 31, 34, 53.
factor: 35, 36, 39.

fclose: 53.

feount: 3.

fgets: 10.

fixcount: 45, 54.

fixlist: 47, 52.

fopen: 53.

forintf: 3,5,9,10, 11, 13, 14, 16, 19, 22, 26, 27, 29,

31, 34, 35, 39, 40, 42, 43, 44, 45, 50, 51, 52, 53.

INDEX 25

free: 20, 21, 29, 34.
g: 3.

gam: 25, 31, 41, 53.
gb_init_rand: 9.
gb_next_rand: 15, 37.
gb_rand: 4.

h: 3.

hack_clean: 32.
hack_in: 12.
hack_out: 32.

hash: 8, 9, 17, 29.
hash_bits: 8, 15, 16.
hbits: 4, 5, 9, 10, 16.
hist: 44.

3.

i 3.

mmems: 3, 4.
iter: 35, 36, 39, 40, 42, 43, 44, 45.

Jr 3, 47.
k: 3, 27, 47.
kk: 3, 31, 53.

l: 3, 26, 27, 47.
link: 24, 30, 32, 38, 48, 49.
lit: 24, 26, 32, 40, 41, 50, 51, 53.
literal: 24, 25, 29.
i: 3, 26, 47, 50, 51.
lmem: 24, 25, 27, 29, 30, 32, 37, 38, 39, 40, 41,
43, 44, 45, 47, 48, 49, 50, 51.
Ing: 6, 16, 17, 33.
main: 3.
malloc: 9, 13, 14, 29, 31.
max_diff : 35, 36, 40, 41, 43, 45.
maz_iter: 4, 5, 35, 36, 42, 43.
mem: 24, 25, 26, 29, 31, 32, 37, 38, 40, 41, 46,
48, 49, 50, 51, 53.
mem_item: 24, 25, 29.
3, 4, 35, 37.
4, 5, 35.
6, 16, 17, 33.
name_buf: 53, 4.
new_chunk: 14.
new_eta: 36, 41.
new_gam: 36, 41.
new_vchunk: 13.

mems:
min_iter:
name:

next: 6, 17, 24, 32, 38, 48, 49, 53.

nmem: 24, 25,6 26, 27, 29, 33, 39, 43, 47, 53.
not_ok: 40.

nullclauses: 8, 10, 11, 19.

o: 3.

octa: 6, 25, 29.

ok: 40.



26 INDEX

old_chunk: 20.

old_eta: 36, 41.

old_vchunk: 21.

oo: 3, 32, 38, 39, 40, 45, 46, 48, 49, 52.

ooo: 3, 37, 52.

out_file: 53, 54.

p: 3, 12, 47.

pi: 24, 27, 38, 39, 41, 43, 44, 45.

pi0: 36, 39, 41, 43, 45.

pil: 36, 39, 41, 43, 45.

prev: 6, 7, 13, 14, 20, 21, 34.

print_clause: 26.

print_var: 27.

printf: 42, 47, 50, 51, 52.

g 3, 47.

r. 3.

random_seed: 4, 5, 9, 53.

rating: 24, 39, 40, 45, 47, 50, 51.

rein: 36, 39.

removed: 49, 53.

serial: 6, 17, 32.

show_basics: 3, 4, 39, 42, 45, 52.

show_choices: 4, 35.

show_details: 4, 35, 39, 40.

show_gory_details: 4, 39.

show_histogram: 4, 42.

show_pis: 4, 42.

size: 24, 46, 48, 49, 53.

sprintf: 53.

sscanf: 5.

stamp: 6, 12, 17, 18.

start: 24, 26, 31, 40, 41, 46, 49, 53.

stderr:  3,5,9,10, 11, 13, 14, 16, 19, 22, 26, 27, 29,
31, 34, 35, 39, 40, 42, 43, 44, 45, 50, 51, 52, 53.

stdin: 2, 8, 10.

strlen: 10.

thresh: 4, 5, 35.

threshold: 4, 5, 35.

tmp_var: 6, 7, 8, 9, 12, 32.

tmp_var_struct: 6.

u:  24.

uint: 3, 6, 8, 24, 26, 27, 44, 49.

ullng: 3, 4, 8, 12, 24, 32.

unit: 45, 50, 51, 52, 54.

unitcount: 50, 51, 52, 54.

u?2: 6.

var: 6, 13, 21, 34.

vars: 8,10, 17,22, 29, 30, 33, 37, 38, 39, 43, 44, 45.

vars_per-vchunk: 6, 13, 21.

vchunk: 6, 8, 13, 21.

vchunk_struct: 6.

verbose: 3, 4, 5, 35, 39, 40, 42, 45, 52.

zf:

24, 27, 38, 39, 41, 43, 44, 45.

SAT9

§55



SAT9 NAMES OF THE SECTIONS

(Adjust the reinforcement fields 39) Used in section 35.

( Allocate the main arrays 29) Used in section 28.

( Check consistency 34) Used in section 28.

(Compute the 7’s 38) Used in section 35.

( Copy all the temporary cells to the mem and emem arrays in proper format 31) Used in section 28.

( Copy all the temporary variable nodes to the nmem array in proper format 33) Used in section 28.

(Decide which variables to fix 45) Used in section 42.

( Enforce the unit literal mem [k — 1].lit 51) Used in section 46.

( Enforce the unit literal mem [p].lit 50) Used in section 49.

(Exit if the clauses are pseudo-satisfied 40) Used in section 35.

(Find cur_tmp_var-name in the hash table at p 17) Used in section 12.

( Global variables 4, 8, 25, 36, 54)  Used in section 3.

(Handle a duplicate literal 18) Used in section 12.

(Initialize all n’s to random fractions 37) Used in section 35.

(Initialize everything 9, 15) Used in section 3.

(Input the clause in buf 11) Used in section 10.

(Input the clauses 10) Used in section 3.

(Insert the cells for the literals of clause ¢ 32) Used in section 31.

(Install a new chunk 14) Used in section 12.

(Install a new vchunk 13) Used in section 12.

(Mark the clauses that contain [ satisfied 48) Used in section 47.

(Move cur_cell backward to the previous cell 20) Used in sections 19 and 32.

(Move cur_tmp_var backward to the previous temporary variable 21) Used in section 33.

( Output a reduced problem 42) Used in section 35.

{ Output the reduced problem 53) Used in section 42.

(Preprocess the clauses for reduction 46) Used in section 42.

(Print a two-dimension histogram of 7, versus 7y 44) Used in section 42.

(Print all the 7’s 43) Used in section 42.

(Process the command line 5) Used in section 3.

(Put the variable name beginning at buf[j] in cur_tmp_var-name and compute its hash code h 16)
in section 12.

(Reduce the problem 52) Used in section 42.

(Remove [ from all clauses 49) Used in section 47.

(Remove all variables of the current clause 19) Used in section 11.

(Report the successful completion of the input phase 22) Used in section 3.

(Scan and record a variable; negate it if i =1 12) Used in section 11.

(Set up the main data structures 28) Used in section 3.

(Solve the problem 35) Used in section 3.

<Subroutines 26, 27, 47> Used in section 3.

(Type definitions 6, 7, 24) Used in section 3.

(Update the n’s 41) Used in section 35.

(Zero the links 30) Used in section 28.

27

Used



SAT9

Section Page

T o 1
The I/O WEADDET .« .. oo ettt et e e et e e e e e e 6
SAT solving, version 9 . ... ...t 23
Initializing the real data structures ........ ... .. . 28
Dooing It . oo 35
The aftermath . ... ... 42

I .o 55

11
13
15
19
25



